PX-A45-OH

CATALYTIC MEDIA

ResinTech PX-A45-OH is strong base type I macroporous catalyst with large porous polymeric structure that allows aqueous and non aqueous catalytic reactions inside of the its sponge-like structure. Its unique structure allows the complete reaction within the resin bead with is hydroxyl available groups for a complete reaction with large molecules. ResinTech PX-A45-OH has been designed as a fast reaction catalytic media for aldol condensation, acids removal from chlorinated hydrocarbons and fenol-acetone solutions. Because of its large polymeric macroporous structure the PX-A45-OH can easely remove mercaptans from alcohols, such as methanol in etherification processes.

APPLICATIONS

- Aldol condensation
- Carbonylation
- Mercaptans removal from hydrocarbons and methanol
- Acids removals from chlorinated hydrocarbons
- Acid removal from polar and non polar solutions

SUGGESTED OPERATING CONDITIONS

Maximum operating temperature	$140^{\circ} \mathrm{F}$
Maximum Pressure Loss	15 psi across resin bed
Minimum Depth	39 inches
Service Flow Rate	$0.5-5.0$ bed volumes/hour

Note: These guidelines describe average low risk operating conditions. They are not intended to be absolute minimums or maximums.
For operation outside these guidelines, contact ResinTech Technical Support

TYPICAL PROPERTIES \& PHYSICAL CHARACTERISTICS

Polymer Matrix	Styrenic Macroporous
Ionic Form	Hydroxide
Functional Group	Quarternary Amine
Physical Form	Spherical Beads
Ionic Form	Hydroxide
Percent in Hydroxyde Form	$>99 \%$
Total Capacity	$>0.8 \mathrm{eq} / \mathrm{l}$
Moisture Content	$66-75 \%$
Surface Area	$>30 \mathrm{~m} 2 / \mathrm{g}$
Average Pore Volume	$>0.2 \mathrm{cc} / \mathrm{g}$
Average Pore Diameter	$>290 \mathrm{Angstroms}$
Swelling	Approx. $34 \% \mathrm{in} \mathrm{acetone}$
Shipping Weight	Approx. $675 \mathrm{~g} / \mathrm{l}$
Screen Size	$0.4-1.25 \mathrm{~mm}$

