Deionization Part II

Keys to success in a service DI Environment

Topics for Discussion

- Capacity Review from Part 1 (Mixed Bed)
- Resin Regeneration Efficiency
- Mixed Bed Regeneration
- Good Housekeeping
- Troubleshooting

Types of Ion Exchange Resins

Cation Resins

Strong & Weak Acid

Anion Resins

Strong & Weak Base

Mixed Bed Resins

Field Regenerated Resin *note y-axis Resistivity (MegOhm)

Capacity Calculator (Example)

					Exhaustion			
TDS as	CO ₂ ppm as CO ₂	CO ₂ ppm as CO ₃	TEA ppm as CO₃	TEA gr/gal as CaCO ₃	17 meg end gal/ft3 @ 4,000 gr/ft ³	10 meg end gal/ft3 @ 5,000 gr/ft ³	1 meg end gal/ft3 @8,000 gr/ft ³	50K end gal/ft3 @10,000 gr/ft ³
1	2	2.28	3.28	0.19	20,853.66	26,067.07	41,707.32	52,134.15
1	5	5.7	6.7	0.39	10,208.96	12,761.19	20,417.91	25,522.39
1	20	22.8	23.8	1.39	2,873.95	3,592.44	5,747.90	7,184.87
200	5	5.7	205.7	12.03	332.52	415.65	665.05	831.31
200	20	22.8	222.8	13.03	307.00	383.75	614.00	767.50

Capacity Comparison

Rules of Thumb

Resin Type	Virgin (Grains / Cuft)	Regenerated (Grains / Cuft)	
SAC (H+)	38,000	30,000	
SBA (OH-)	30,000	15,000	
Mixed Bed (H+/OH-)	13,000	8,000	

Regeneration

- Capacity dependent upon efficiency of regeneration
 - Chemical dose and ions being removed from the resin
- The Law of Diminishing returns
 - ▶ 8-10 Lbs per Cuft of Acid (HCl) and Caustic (NaOH)
- Virgin resin capacity much higher than field regenerated resin

Regeneration of CG8 (BL)

from Sodium form to Hydrogen Form

Regeneration of CG8 (BL)

from Calcium form to Hydrogen Form

Regeneration of SBG1P

from Chloride form to Hydroxide Form

Regeneration of SBG1P

From Sulfate form to Hydroxide Form

Regeneration of SBG1P

From Bicarbonate form to Hydroxide Form

Capacity & Effluent Water Quality

- Function of what was on the resin and regeneration dose
 - Least strongly held ion first to come off
 - Na⁺ for SAC
 - SiO₂ for SBA
 - Heated NaOH Required to remove during regeneration (100-120° F)
- Regeneration Dose
 - Higher the dose, the lower the leakage

(Virgin Resin)

(Regenerated Resin)

(Regenerated Resin)

Mixed Bed Regeneration

- Review in the context of Portable or Service Exchange Deionization
 - PEDI or SDI
- End goal to achieve consistent high effluent quality of water for as many gallons as possible
- Best way to achieve your goal is to pay attention to the details!

Mixed Bed Regeneration

Classic Ecodyne Style Regeneration Plant

Mixed Bed Regeneration

- Backwash & Separation
- Chemical Addition & Rinse
- Mixing
- Loading into Vessels
- Storage

Backwash & Separation

- A flow of water is passed upward through the resin bed
- The resin bed expands and fluidizes
- Purpose
 - To remove suspended solids and resin fines
 - Cation and anion resin separation

Ideal Resin Separation

Realistic Resin Separation

Factors Effecting Separation

- Limited expansion space
 - Don't overload separation column
- Static attraction (stickiness) of resin
- Separation column internals
- Too high of backwash flow rate
- Ionic forms of resin
 - Exhausted resin separates easier (Brine Kill)

Brine Separation

- Referred to as "Brine Kill"
- Na⁺ and Cl⁻ exchange for any remaining H⁺ and OH⁻ on resin
- Increases density differences between the resins
- Ease of separation

Drawbacks of Brine Kill

- Having Na⁺ and Cl⁻ on resin require higher chemical doses to remove from the resin.
- Resin beads can fracture due to osmotic shock. Cracked beads lead to broken beads which leads to resin loss and quality issues.
- Anion more fragile than cation. Will lose volume faster.

Resin Under the Microscope

Virgin Mixed Bed

Physically Broken

Oxidized

Importance of Separation

- Minimize cross-contamination
 - Anion in Cation OK- minimize
 - Cation in Anion Very Bad!!
- Keep interface as small as possible
- Draw anion off top very slowly and meticulously

Anion Resin Transfer Side Take off

Anion Resin Transfer Side Take off

Cation Resin Transfer Side Take off

Minimizing contamination during transfer

- Slow backwash during transfer
 - Maintaining a slow backwash during transfer helps prevent funneling by keeping the bed surface relatively flat
- Stop Transfer/ Level Bed/Resume Transfer
 - This technique is more effective than backwashing alone.

Chemical Addition

- Acid solution through cation bed- HCI
- Caustic solution through anion bed- NaOH
- The relatively high concentration of hydrogen or hydroxide ions causes the reverse exchange
- The resin is restored to the hydrogen or hydroxide form

Chemical Addition

- Concentration + Flow Rate + Time = Dose
- Dose controls the capacity and ion leakage of both ion exchange resins
- Very important to insure all parameters are met
- Improve anion regeneration by utilizing warm NaOH (100-120° F)

Displacement or Slow Rinse

- Increases contact time between regenerant and the bottom of the bed
- Helps push remaining regenerant through the bed without significant mixing
- Begins the rinse process

Fast Rinse

- Removes the last traces of regenerant chemical from the resin
- Warm water (100-120° F) will decrease amount of time needed to rinse anion resin
- Any HCI/NaOH left on the resin will decrease capacity and increase ion leakage of resulting mixed bed

RO vs. City Water Floats

- RO water float will require higher doses of chemicals due to amount of Na+ and Cl- on resin.
- Poor regenerations are easier to notice
- Inversely, City water float will regenerate a little easier
- Organics can foul anion resin and may require cleaning
- Indication of organics is long rinses
- Warm brine/caustic treatment is best

Mixing of Components

- Dry mixing is theoretically the best
 - Most intimate
 - Labor intensive
- Wet mixing is more than fine
 - Key is minimizing risks of resin separating
 - Very quick process

Loading of Vessels

- Dry loading is best
 - Labor intensive
 - Prevents separation
- Wet loading is more than adequate
 - Minimize risks of resin separating
 - Very quick process
- No Freeboard in tanks!

Storing Regenerated Resin

- Regenerated Cation and Anion resin
- Store freshly regenerated components wet, sealed in drums
 - Minimizes odor from anion resin
 - Prevents CO₂ intrusion (1% in 24 hours)
- Ideally, mix immediately to minimize amine odor from anion (fishy)

Storing Regenerated Resin

- Regenerated Mixed Bed Resin
- Store resin dry, sealed in tank or drums
 - Wet storage with free board, can cause separation
 - Remove water from tanks, air is best
 - Prevent CO2 intrusion (top 1"can be lost to conversion in 24 hours)

Troubleshooting

A process of elimination

Equipment

- Distribution problems
- Control malfunctions
- Leaking valves
- Operator error

Water

 Change in influent chemistry

Media

- Loss of resin in vessels
- Poor Regenerations
- Oxidation of Resin
- Fouling
- Resin Age
 - SAC (10 yrs)
 - SBA (4 yrs)

Housekeeping

- Store regenerated resins properly
- Mix components immediately
- Clean up all resin spills, safety!
- Keep floats separate- City vs. RO
- Take your time and pay attention to details

Questions?

Did you like this webinar?

Scan and follow the link to provide feedback

Upcoming Webinars

This Summer!

Deionization Part 3: Focusing on High Purity Applications

Per- and Polyfluoroalkyl Substances (PFAS)
Identification & Remediation

THANK YOU

Bill Koebel

Eastern Regional Sales Mgr

- p. 412-716-7921
- e. wkoebel@resintech.com

